Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection
نویسندگان
چکیده
We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.
منابع مشابه
Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions
Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresista...
متن کاملEpitaxial Lead Zirconate Titanate Nanocrystals Obtained by a Self-Patterning Method
Epitaxial lead zirconate titanate nanoislands were obtained by a self-patterning method using the instability of ultrathin films during high-temperature treatments. After high-temperature annealing, the as-deposited film breaks into islands with a narrow size distribution. Nanostructures, as small as 20 nm lateral size with a height of 9 nm, were epitaxially grown on Nb-doped (001) SrTiO3 subst...
متن کاملModeling and simulation of low power ferroelectric non-volatile memory tunnel field effect transistors using silicon-doped hafnium oxide as gate dielectric
Keywords: HfO 2 Analytical model Surface potential Ferroelectric Nonvolatile memory Fe-TFET a b s t r a c t The implementation and operation of the nonvolatile ferroelectric memory (NVM) tunnel field effect transistors with silicon-doped HfO 2 is proposed and theoretically examined for the first time, showing that ferroelectric nonvolatile tunnel field effect transistor (Fe-TFET) can operate as...
متن کاملEpitaxial La-doped SrTiO3 on silicon: A conductive template for epitaxial ferroelectrics on silicon
Use of an epitaxial conducting template has enabled the integration of epitaxial ferroelectric perovskites on silicon. The conducting template layer, LaxSr12xTiO3 ~LSTO!, deposited onto ~001! silicon wafers by molecular-beam epitaxy is then used to seed $001%-oriented epitaxial perovskite layers. We illustrate the viability of this approach using PbZr0.4Ti0.6O3 ~PZT! as the ferroelectric layer ...
متن کاملThermoelectric La-doped SrTiO3 epitaxial layers with single-crystal quality: from nano to micrometers
High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10-4 Ω cm at room temperature), one order of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015